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Abstract 

In two preceding papers [Giacovazzo, Siliqi & Ralph 
(1994). Acta Cryst. A50, 503-510; Giacovazzo, Siliqi 
& Spagna (1994). Acta Cryst. A50, 609-621], a 
direct-phasing process was described which proved 
to be potentially able to solve ab initio crystal struc- 
tures of proteins. The method uses the diffraction 
data of the native and of one isomorphous deriva- 
tive. The main limitation of the approach was the 
small number of phased reflections rather than the 
quality of the assigned phases. In this paper, it is 
shown that the phasing process can be extended to 
about 40% of the measured reflections (up to the 
derivative resolution) without reducing significantly 
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the quality of the new phases. Of the four test 
proteins examined, in one case it was possible to 
obtain fully interpretable electron-density maps. 

Symbols and abbreviations 

Symbols and notation are basically the same as in 
papers I and II (Giacovazzo, Siliqi & Ralph, 1994; 
Giacovazzo, Siliqi & Spagna, 1994). Since new 
symbols are necessary here and for the reader's 
convenience, we give a combined list below. 

Fp= lFpl exp (i~) 
Fd-" IFdl exp (i0) 

F,I= Fd- Fp 

Structure factor of the protein 
Structure factor of the isomor- 
phous derivative 
Structure factor of the heavy-atom 
structure (i.e. the atoms added to 
the native protein) 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1995 



178 AB INITIO PROTEIN STRUCTURE BY DIRECT METHODS. III 

( ~ =  ( ~ h -  ( ~ k -  ~h--k 
Ep = R exp(iq0 Normalized structure factor of the 

protein 
Ed = Sexp(i0) Normalized structure factor of the 

isomorphous derivative 
N Number of non-H atoms in the 

primitive cell for the native protein 
O'i: ZjN.= IZ~ Z j :  atomic number of j th  atom 

"--0"2/0" 3 (Statistically equivalent) number of Neq 3 2 

atoms in the primitive unit cell 
[0"3/0"2]p Value of Neq for the native protein 
[0"310"2]/4 Value of Neq for the heavy-atom 

structure 
G = 2[ 0" 3/0"23/23p1Rh Rk Rh - k[ 
fj Atomic scattering factor of the jth 

atom 
Zp = Z p f  2 The sum is extended to the native 

protein atoms 
y./4= y./4f2 The sum is extended to the heavy- 

atom structure 
"~d--~.df  2 The sum is extended to the deriva- 

tive atoms 
D,(x)=I,(x)/Io(x) //=modified Bessel function of 

order i 
tm E ~ -  Fd/Y.~2= S' exp (i0) 

Derivative pseudonormalized 
structure factor 

E~= Fp/Y.~ 2= R' exp (i~0) 
Native protein pseudonormalized 
structure factor 

A = S' - R' ,4' = S' T -  R' 
T = D I ( 2 R ' S ' )  0" = [0-2]/4/[0-2]p 
CARP Carp muscle calcium-binding protein 
E2 Catalytic domain of Azotobacter vinlandii 

dihydrolipoyl transacetylase 
M-FABP Recombinant human muscle fatty-acid- 

binding protein 

Introduction 

In paper I of this series, the statistical solvability 
criterion (Giacovazzo, Guagliardi, Ravelli & Siliqi, 
1993) was applied to calculated error-free data. It 
was shown that ab initio* crystal structure solution 
of proteins by direct methods is theoretically feasible 
if data from one isomorphous derivative are 
available. 

In paper II, a new phasing method was proposed 
for the ab initio crystal structure solution of proteins. 
The method is based on a probabilistic approach 
which integrates direct methods and isomorphous 
techniques. The keystone is the formula estimating 

* As usual for direct methods, we speak of ab initio crystal 
structure solution when phases are directly derived from diffrac- 
tion data without any supplementary prior information on heavy- 
atom positions, orientation of the molecule, single isomorphous 
replacement or multiple isomorphous replacement etc. 

three-phase invariants given six magnitudes, 
obtained by Giacovazzo, Cascarano & Zheng (1988) 
(see also a related formula by Hauptman, 1982). 
Important points of the method are: (1) a correct 
choice of the reflections actively used in the phasing 
process (incorrect selection may not satisfy the statis- 
tical solvability criterion); (2) a normalization pro- 
cedure that reduces the influence of the measurement 
errors and of the lack of isomorphism; (3) a correct 
weighting scheme in the tangent-refinement process 
designed for driving phases far away from the so- 
called 'Patterson solution'; (4) efficient new figures of 
merit for picking out the correct solution among 
several trials. 

The experimental data of four proteins, quoted in 
Table 1 by code names APP, CARP, E2, M-FABP, 
were used. In Table 2, the key parameters of the 
phasing process are shown: DERIVATIVE denotes 
the heavy atom added to the protein, R E S -  
M(2sin0max) is the resolution of the measured data 
for the derivative, NREFL is the number of meas- 
ured symmetry-independent reflections up to RES 
resolution, NLAR is the number of structure factors 
phased by the procedure, ERR is the weighted aver- 
age phase error (°) for the NLAR assigned phases. 
The results may be described thus: 

(a) NLAR reflections were phased in a 
straightforward way by a default run of the program. 
Only 25 trials were necessary for obtaining the cor- 
rect solution. This number is astonishingly small if 
one considers the complexity of the problem. 

(b) Figures of merit efficiently ranked the trial 
solutions: the correct solution was always among the 
first three. 

(c) The procedure was not time consuming: 4 or 
5 min of CPU time on an IBM risk 6000 were 
sufficient for the completion of the phasing process. 

(d) Atomic resolution was not necessary. Data up 
to the derivative resolution were used. 

(e) The procedure benefits by perfect isomorphism 
and accurate measurements but it is not very sensi- 
tive to lack of isomorphism and/or to experimental 
errors. CARP and M-FABP can each be considered 
as a good representative of a standard protein (with 
respect to quality of data, size etc.) while E2 has an 
excellent isomorphous derivative. 

( f )  Correlation between the electron-density maps 
calculated by using the NLAR reflections phased by 
our procedure and the maps relative to all the 
NREFL reflections with their true phases was high. 
However, our maps were not immediately interpret- 
able because of: (1) too large series-truncation effects 
(i.e. NLAR was too small); (2) possible loss of 
enantiomorph (for APP and CARP). The general 
conclusion was that phase extension rather than 
better refinement of the assigned phases was the most 
urgent problem to solve. 
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Table 1. Code name, space group and crystallo- 
chemical data for test structures 

Structure Space 
code g r o u p  Molecular formula Z 

APP* C2 ClgoN53OssZn 4 
CARP~ C2 Cs!3NI310121Ca2S 4 
E2{ F432 C1170N31oO366S7 96 
M-FABP§ P2~2s2~ C667NIT0026153 4 

* Glover, Haneef, Pitts, Wood, Moss, Tickle & Blundell (1983). 
~" Kretsinger & Nockolds (1973). 
:I: Mattevi, Obmolova, Schulze, Kalk, Westphal, De Kok & Hol 

(1992). 
§ Zanotti, Scapin, Spadon, Veerkamp & Sacchettini (1992). 

Table 2. Key parameters of  the phasing process 

DERIVATIVE denotes the heavy atom added to the protein, RES 
[= M(2sin0max)] is the resolution of the measured data for deriva- 
tive, NREFL is the number of measured symmetry-independent 
reflections, NLAR is the number of largest normalized structure 
factors phased by the procedure described in paper II, ERR is the 
weighted average phase error for the NLAR assigned phases. 

DERIVATIVE RES NREFL NLAR ERR (°) 
APP Hg 2.0 2086 600 41 
CARP Hg 2.0 4416 1000 41 
E2 Hg 3.0 7757 1000 30 
M-FABP Hg 3.0 2931 800 45 

In accordance with the conclusions of paper II, the 
problem of how to preserve the enantiomorph in the 
phasing process will be treated in the next paper; we 
devote the present paper to extending phases to a 
larger number of reflections. It will be shown that 
phase extension can be performed without reducing 
the quality of the new phase values provided that a 
limited percentage of the total number of reflections 
measured up to RES resolution are involved in the 
procedure. The entire process, phase assignment and 
phase extension, can be fully automated. 

Usefulness of indicators predicting errors in triplet 
estimation 

Although all reflections may be involved in the 
phase-extension process, only a subset of structure 
factors can be phased reliably. The first problem to 
solve is: how many reflections can we involve in the 
phase-extension process without a strong reduction 
of the phase reliability? 

Crick & Magdoff (1956) first established the use- 
fulness of a parameter that measures the average 
change in intensity due to the addition of heavy 
atoms to a protein. More recently, a strictly con- 
nected parameter, the so-called diffraction ratio, 

DR = {210-23H/[0-2]p} 1̀ 2 = (20") 1/2, 

has been employed by Fortier, Weeks & Hauptman 
(1984) for predicting the overall reliability of the 
phase estimates via direct methods. For exceedingly 
large values of the diffraction ratio, the integration 

of direct methods with isomorphous-replacement 
techniques produces marginal benefit; on the other 
hand, too small a value does not provide a sufficient 
signal-to-noise ratio. Detailed prior knowledge of 
DR is not needed for the estimation of triplet 
invariants: small errors in its estimate are not pre- 
judical for direct-methods applications. A statistical 
evaluation of DR may be obtained via the corre- 
lation coefficient (Hauptman, 1982; see also 
Kyriakidis, Peschar & Schenk, 1993, for a related 
expression) 

r = ( ( R  z - ( R 2 ) ) ( S  2 - ( S Z ) ) )  

x ( ( R  - - (1) 
where the averages are taken over all reciprocal- 
lattice vectors and r = 1/(1 + DR2/2). 

If the averages in (1) are taken over all reciprocal- 
lattice vectors having a fixed value of sin0/A then r is 
expected to be constant in the case of perfect isomor- 
phism, monotonically decreasing with sin0/A in the 
case of imperfect isomorphism. Unfortunately, the 
uncertainty in the relative scaling of the native and 
derivative intensity data does not allow an accurate 
estimate both of DR and of the degree of isomor- 
phism. In Fig. 1, we plot r as a function of sin0/~ for 
APP, CARP, E2 and M-FABP. While r does not 
significantly vary for APP and M-FABP (this last is 
not characterized by a perfect isomorphism), it 
decreases at high sin0/A for E2 and CARP, which 
are characterized by a quite good derivative and by a 
bad derivative, respectively. 

Even if DR and the quality of the isomorphism 
were known a priori, they would not answer the 
problem of evaluating how many reflections should 
be involved in the phase-extension process. A useful 
suggestion may be derived as follows. According to 
paper I [equation (11)], the reliability parameter for 
a triplet phase is 

A = 2[0"3/0-23/2]pR]R2R3+ 210-J0-23/2]HA[A~A;. (2) 
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Fig. 1. The correlation factor r as a function of sin0/A for APP, 
CARP, E2 and M-FABP. 
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For typical derivatives and for R and S larger than 
or close to unity, the factor T is so close to unity that 
A' may replaced by A. Relation (2) suggests that the 
overall reliability of the triplet phase estimates, and 
therefore the efficiency of the phasing process, is 
correlated with the distribution of lal. Thus, it is of 
interest to derive it and to exploit such information 
to guess about the phase-extension process. 

The probability distribution function P(IAI) 

According to Hauptman (1982), 

P(R,S) = [ (4RS)/ (1-  a2)]exp - [(R 2 + $2)/(1-a2)] 

x Io[(2aRS)/(1 - a2)], (3) 
where 

= ff ~ d J [  ~2],} ~/2. 

We first express (3) in terms of the pseudo- 
normalized structure factors S' and R', 

P(R',S') = 4R'S'(Z,/Zp) 

X e x p { - [ R ' Z ( Z a / Z p )  + S '2]}  

× Io(2R'S'). (4) 

Then we introduce the change of variable A = 
S' - R' and (4) becomes 

P(R',A) = 4(Zn/Zp)R'(R' + A) 

x e x p { -  [2R 'z + R'2(ZH/'~.p) + 2R'A+ gz]} 

X Io[2R'(R' + A)]. (5) 

For -3 .75  _< x _< 3.75, Io(x) may be approximated by 
a polynomial in even powers of t (see Abramowitz & 
Stegun, 1972), where t = x/3.75. For large values of 
R' it is not easy to compute (5) directly. For 3.75 < 
x <  oo, we approximate Io(x) by Q(t)exp(x)x -v2, 
where Q is a suitable polynomial of order 8 in terms 
of t -~ 

We obtain 

P(R',A) = 2(2)vz(Y.u/~p) 

x e x p ( -  A2)[R'(R ' + a)] v2 

x Q ( t ) e x p [ -  R'=(Zu/Y.,,)]. (6) 

Then, 
o o  

p(A) = f P(R',A)dR', (7a) 
0 

for positive values of A, and 
o o  

p(A) = f P(R',A)dR', (7b) 
--A 

for negative values of A (the limits of integration are 
because R' = S ' - A  has to be positive). Finally, 

P(IAI) = PC + IAI) + P ( - l a l ) .  (8) 

The distribution p(A) has been calculated by 
numerical methods: for simplicity, we have replaced 
Y~n/Y.p by ~r. Curves corresponding to various values 
of or are shown in Fig. 2. As expected, p(A) is not an 
even function. The range (0.46, 0.04) includes most 
of the cr's found in the literature for protein crystal- 
lography. The value o-= 0.46 is unusual and cor- 
responds to APP, ~r=0.09,  0.08, 0.06 are the 
corresponding values for CARP, E2 and M-FABP, 
respectively. Curves in Fig. 2 do not strongly vary 
with o- but each of them is significantly shifted with 
respect to the others. 

In Fig. 3, we show the distribution P(la[)  calcu- 
lated for cr = 0.08; it can be considered a satisfactory 
approximation of the distribution of lal for a typical 
protein. In Fig. 4, we show the cumulative distribu- 
tion of (8), together with cumulative curves of the 
Wilson distribution, 

Pl(R) = 2 R e x p ( -  R2), 

for non-centrosymmetric space groups; and 

PT(R) = (2/zr)'/Zexp ( -  R2/2), 

for centrosymmetric space groups. The figure shows 
that the percentage of reflections with A larger than 

p (A) 1.0 

0.8 

0.6 

0.4 

0.2 

0.0 I 

-2.5 2.5 
A 

~r = 0.46 
= 0.20 

. . . . . . .  a = 0.08 
................. a =  0.04 

~ . . ' ; 3  

~ - ~~S 4 

-1.5 -0.5 0.5 1.5 

Fig. 2. p(A) distribution for selected values o f  o-. 

P (IAI) 1.2 

1.0 

0.8 

0.6 

0.4 
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0.0 
0.0 

i i i 

0.5 1.0 1.5 2.0 

Fig. 3. P(IAI) for ~r = 0.08. 
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a given threshold TRA (for example, TRA = 0.5) is 
significantly smaller than the corresponding per- 
centage for the normalized structure factors in 
centro- and in non-centrosymmetric space groups. 
For the reader's convenience, numerical values for 
the cumulative distribution functions p(]d[) are given 
in Table 3. 

What do these results suggest for the phasing 
process of the proteins? According to relationship 
(2), the triplet reliability mostly depends on the Id[ 
parameters while the reliability of the single phase q~h 
relies on the Ceh value [see equation (II.3)]. A basic 
condition for high ah values is that IAhl is sufficiently 
large: since [cr3/cr2]~ is a very small number, lab > 
0.5 may be chosen (as a rule of thumb) as a reason- 
able lower limit for 141. If the rule is satisfied, ~0h is 
said to be accessible through the triplet relationships 
(I.11). According to Table 3, the number of acces- 
sible phases is about the 52% of NREFL, that is 
1085, 2296, 4034 and 1524, for APP, CARP, E2 and 
M-FABP, respectively. 

In paper II, the number of phased reflections (see 
.... t-h<e<parameter NLAR in Table 2) was 600, 1000, 

1000 and 800 for APP, CARP, E2 and M-FABP, 
respectively. They correspond to the ratios 'number 
of phased reflections/number of measured reflections' 
equal to 0.29, 0.23, 0.13 and 0.28, respectively. There 
is, therefore, the possibility of extending the phasing 
process to a substantial supplementary set of reflec- 
tions. It is worthwhile mentioning (see papers I and 
II) that the experimental IA[ values include a non- 
negligible noise as a consequence of errors in meas- 
urements, lack of isomorphism, scaling errors etc. 
The result is that the distributions p([A[) and C(IA[) 
obtained from experimental data should be less 
sharp than expected theoretically. However, the 
results of this section suggest that, in ideal condi- 
tions, about 52% of the reflections up to the deriva- 
tive resolution (i.e. those with the largest IAI values) 
could be phased by our probabilistic approach. The 

C 1.0 ct (R~ 
\, \ ci (R) 

0.8 ~ ~ ........ c 0A0 

0.6 '"5 \ 

0.4 ',, \ \  

0.2 ".. ,-.. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 
IAI, R 

Fig. 4. Cumulative distribution of P(LAI) together with cumula- 
tive functions of  Wilson distributions for centrosymmetric and 
non-centrosymmetric space groups. 

Table 3. Numerical values for the cumulative function 
C(IAI) 

IAI % IAI % 
0.00 1.00 1.10 0.13 
0.10 0.94 1.20 0.098 
0.20 0.83 1.30 0.072 
0.30 0.72 1.40 0.051 
0.40 0.61 1.50 0.035 
0.50 0.52 1.60 0.024 
0.60 0.43 1.70 0.015 
0.70 0.35 1.80 0.086 
0.80 0.28 1.90 0.039 
0.90 0.22 2.00 0.077 
1.00 0.17 

minimum value of IA[ for these reflections is the 
threshold T R A F  which will be used in the phasing 
procedure. In the practical (non-ideal) cases, TRAF 
can sometimes be smaller than 0.5, at which time we 
should be prepared to pay a penalty in terms of 
phase accuracy. 

The phasing procedure 

In one possible strategy for phase determination, the 
threshold T R A F  for I,al could be fixed and all the 
reflections with 141 -> T R A F  simultaneously involved 
in the phasing process. Triplets are then estimated 
and the tangent formula is applied. Such a strategy 
would require the calculation of several tens of mil- 
lions of triplets, their cumbersome management by 
the tangent formula, and large storage and comput- 
ing time. 

We have chosen a different strategy: first we phase 
a small set of reflections with large 141 and R values. 
Among the various trials provided by a multisolution 
approach, the most probable ones will be used as 
seeds for subsequent phase expansion. 

For the sake of simplicity, the procedure is 
described below in steps. 

Step 1. Selection of  the reflections to phase 

As stated in papers I and II, the reflections to 
phase should be characterized by: (a) high values of 
IA[, in order to guarantee a reliable phase assign- 
ment; (b) non-vanishing values of R, in order to 
provide, once phased, useful information for 
electron-density maps. Accordingly, the NREFL 
reflections (those for which both IFpl and IF I are 
available from measurements) are partitioned into 
two subsets: 

(1) The subset including the reflections with the 
smallest R values. Their number is chosen to be the 
minimum between 1000 and 25% of NREFL. Some 
of these reflections, i.e. those with IA] < 0.2, will be 
used for constructing PSI0 triplets. Let NPSI be the 
number of reflections with small values of IRI and I,al 
that are actually involved in PSI0 triplets. 
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(2) The subset {yl} including NREFL-NPSI 
reflections. According to the preceding section, we 
should try to phase about 52% of the NREFL 
reflections, i.e. those characterized by the largest I,al 
values (accessible phases). 

Step 2. The first batch 

By default, 60% of the reflections in {y~} (those with 
the largest R values) are selected. The cumulative 
distribution of the IA]'s relative to such reflections is 
calculated, giving the number n of reflections with 141 
larger than a given value. The threshold TRA(1) is 
chosen as the value of 141 corresponding to n = 800. 
The statistical solvability criterion is applied: if it is 
satisfied then NLAR(1)= n is the number of reflec- 
tions which will be phased first, otherwise NLAR(1) 
is increased until the criterion is satisfied. The 
NLAR(1) reflections are said to constitute the subset 
BATCH(l). 

Step 3. The next batch 

Let NLAR(2) be the number of reflections [among 
the NREFL-NPSI-NLAR(1) reflections] with IAI > 
TRA(2)-  TRA(1). They will constitute the subset 
BATCH(Z). 

The remaining NREFL-NPSI-NLAR(1)-NLAR(2) 
reflections are divided into subsets [i.e. each 
BATCH(/) for i > 2 contains about 400 reflections], 
the ith subset being associated with a given threshold 
TRA(/) for IAI. Since TRA(i+ 1) _< TRA(i), the 
reflections in BATCH(/) will have IAI larger than the 
reflections in BATCH(i + 1). The last TRA value will 
coincide with TRAF. 

Step 4. A supplementary batch 

In order to improve the continuity in the Fourier 
map, an additional number of reflections in the low 
sin0M range is phased. The corresponding subset 
[i.e. BATCH(LAST)] will involve reflections with 
sin0/a _< (sin0/,~)m~x/2, provided 

IA] _> TRAF x 0.95 x 0.85 for reflections with 
restricted phase value, 

IAI ___ TRAF x 0.95 for reflections of general 
type. 

Step 5. Triplet calculation 

Let {T,} be the set of triplet invariants among the 
reflections in BATCH(/) and let {Tu} be the set of 
triplets constituted by one reflection in BATCH(/) 
and two reflections in BATCH(j), In our procedure, 
we only calculate the sets {Tgl} for i = 1,2,... and we 
store for each ith set up to 50000 triplets (the most 
reliable ones). 

Step 6. The phasing procedure 

The NLAR(1) reflections in BATCH(l) are phased 
according to the procedure described in paper II. 
Among the various trials provided by the multisolu- 
tion approach, the most probable one is chosen as a 
seed for the subsequent phase expansion. 

The set BATCH(2) is phased from BATCH(l) by 
using the {T21} triplets: phases are then refined by 
making use of the triplets {T11} U {T21}. Since TRA(2) 
=TRA(1), the average accuracy of the phases in 
BATCH(2) is expected to be very close to that of the 
reflections in BATCH(l). Therefore, for i > 2, the set 
BATCH(i) is phased from BATCH(l) by using the 
{T~I} triplets: phases are then refined by using the set 
of triplets {T~I} U {Tzl } tO {Ti~}. It is worthwhile 
noting that every set of phases so obtained is referred 
to the same origin, that fixed for set BATCH(l). 

Step 7. The Fourier map 

Once the set BATCH(1) tO BATCH(2) U BATCH(3) 
tO... is phased, it is used for calculating an electron- 
density map. If the map is not satisfactory (i.e. it is 
not interpretable in the chemical sense, then the trial 
immediately following [as ranked by the combined 
figure of merit (CFOM)] the most probable one is 
used as a seed for phase expansion (in accordance 
with step 6): the corresponding Fourier map is then 
calculated. The process may be cyclically repeated 
for each trial. 

Applications 
The procedure above has been applied to the four 
test structures quoted in Table 1. For each structure, 
only 20 trial solutions were demanded to our multi- 
solution approach. The correct solution was that 
with the highest value of CFOM for M-FABP 
(CFOM = 0.43), with the second highest value for 
CARP (CFOM = 0.889), with the third highest value 
of CFOM for E2 and APP (CFOM = 0.425 and 
0.954, respectively). 

Below we will only give details about the phasing 
process for the correct solutions. 

We first attempted extending phases up to 52% of 
the NREFL reflections. In order to check the quality 
of the assigned phases, we divided the reflections in 
ranges of sin0M, a, R and Ial: for each range, we 
calculated the phase error ERR just after the phase 
extension [ERR(I)] and after the tangent refinement 
[ERR(2)]. The results for M-FABP are shown in 
Table 4. 

We observe: 
(a) ERR(I) and ERR(2) are large at very small 

values of sin0/A. This is probably due to the scat- 
tering from the disordered water, which seems able 
to disturb the experimental estimates of up to 
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Table 4. Results for M-FABP 

The phasing process is extended to 1409 reflections, 1405 of  which 
have non-zero  weight after tangent  refinement. The overall B A T C H  
unweighted phase error  is 52 ° after tangent  refinement. 1 

(a) (sin0/A)2(/k -2) NR(1)  E R R ( l )  (°) NR(2)  ERR(2)  (°) 2 
3 

Table 5. APP: basic parameters of the phase- 
extension process 

0.028-0.025 203 61 202 60 
0.025--0.019 446 54 445 53 
0.019-0.012 362 53 361 53 
0.012-0.006 256 45 255 44 
0.006-0.001 142 50 142 50 

(b) a 

0-56 719 61 534 63 
56-112 261 50 386 53 B A T C H  T R A  N L A R  

112-168 185 46 225 47 1 0.70 826 
168-225 92 39 106 36 2 0.70 400 
225-281 60 32 61 32 3 0.70 322 
281-337 34 25 35 24 4 0.64 169 
337-393 17 28 17 28 5 0.53 353 
393-449 15 28 15 28 6 0.44 41 
449-505 5 43 5 43 Total 2111 
505-562 12 42 12 42 
562-618 4 23 4 23 
618-674 2 19 2 19 
786-842 1 1 1 1 
898-955 1 0 1 0 

1067-1123 1 165 1 165 

(c) R B A T C H  T R A  N L A R  

1 0.90 912 
0.0-0.4 172 68 171 69 2 0.90 400 
0.4--0.8 496 57 493 56 3 0.90 250 
0.8-1.2 382 46 382 47 4 0.84 207 
1.2-1.6 221 50 221 50 5 0.77 238 
1.6-2.0 96 38 96 38 6 0.71 267 
2.0-2.4 30 43 30 43 7 0.65 281 
2.4-2.8 7 39 7 39 8 0.53 396 
2.8-3.2 4 59 4 59 9 0.53 181 
3.2-3.6 1 0 1 0 10 0.40 86 

(d) IAI Total 3218 

0.0-0.4 I1 82 11 82 
0.4--0.8 782 61 780 60 
0.8-1.2 448 44 447 45 
1.2-1.6 125 33 125 32 
1.6-2.0 26 22 25 16 
2.0-2.4 i 1 17 11 17 
2.4-2.8 3 0 3 0 B A T C H  T R A  N L A R  
2.8-3.2 2 90 2 90 1 0.45 709 
3.2-3.6 1 165 1 165 2 0.44 491 

3 0.36 31 

Total 1231 

about 7-8 A resolution. ERR increases for higher 
sin0/A: this is probably due to the progressive lack of 
isomorphism. A curious observation is that, owing to 
the imperfect isomorphism, direct methods can only 
work in practice at non-atomic resolution even if 
traditionally they are expected to work only at 
atomic resolution. 

(b) ERR(I) and ERR(2) are strongly correlated 
with a. The effect of the phase refinement is substan- 
tially a rearrangement of the phase error as a func- 
tion of a rather than its overall reduction. Thus, the 
present phase refinement is not indispensable. 

(c) ERR(I) and ERR(2) are large for small values 
of R and small for large values of R. This behaviour 
can be explained thus: (i) small values of R cannot 
give rise to a valuable Cochran contribution in rela- 
tion (2); (ii) the standard deviation of the measured 

T R A  N L A R  ERR(2)  (o) 

0.30 716 44 
0.28 90 64 
0.27 4 67 

Total 810 46 ERR(weighted) =43 ° 

Table 6. CARP: basic parameters of the phase- 
extension process 

ERR(2)  (o) 

43 
47 
53 
57 
64 
52 

50 ERR(weighted) = 46 ° 

Table 7. E2: basic parameters of the phase-extension 
process 

ERR(2)  (o) 

27 
35 
40 
44 
38 
47 
52 
53 
57 
42 

40 ERR(weighted) = 37 ° 

Table 8. M-FABP: basic parameters of the phase- 
extension process 

ERR(2)  (°) 

46 
55 
60 

50 ERR(weighted) = 47 ° 

intensities is usually larger for weak reflections, and 
this can cause the accuracy of the experimental A 
values to deteriorate. Table 4(c) supports our pro- 
cedure, according to which the NLAR(1) reflections 
(the first seed) are selected among the reflections in 
{yl} with largest R values. Indeed, their phases must 
be as accurate as possible since the error quite easily 
propagates to the other batches. 

(d) ERR is small for large values of [A] and large 
for small values of lal. This behaviour is just the 
expected effect of (2). It is worthwhile noting that 
our rule of thumb on the minimum value of [AI (i.e. 
lahl > 0.5) for a direct procedure is confirmed. 

Trends in Table 4 were confirmed by analogous 
results for APP, CARP and E2. We then decided to 



184 AB INITIO PROTEIN STRUCTURE BY DIRECT METHODS. III 

modify slightly our procedure and declined to extend 
phases to reflections with R <  0.4. The penalty 
should not be too great since these reflections shold 
not contribute much to the electron-density map. 

The modified procedure will now phase less than 
52% of NREFL but their phase accuracy will prob- 
ably improve. The number of phased reflections is 
810, 2111, 3218 and 1231 for APP, CARP, E2 and 
MFABP, respectively, corresponding to 0.39, 0.48, 
0.41 and 0.42 of NREFL. The reader can follow the 
phase-expansion and refinement processes through 
Tables 5-8, where for each BATCH the threshold 
value TRA, the number of phased reflections NLAR 
and the phase ERR(2) are shown. As expected, the 
phase error increases for the batches of high order 
but the overall error at the end of the procedure is 
still acceptable. The unweighted error passes for APP 
from 44 ° for the first seed to 46 ° for the 810 phased 
reflections, from 43 to 50 ° for CARP, from 27 to 40 ° 
for E2 and from 46 to 50 ° for M-FABP. 

(a) 

(b) 

Fig. 5. Stereo drawing of the electron-density map of a portion of 
the crystal cell of E2, calculated at 6 A resolution with 
(a) direct-methods phases and (b) phases derived from SIR and 
solvent flattening. The map is viewed along z, from 35 to 49 A. 
x runs horizontally across the page, from 9 to 58 A and y 
vertically, from 0 to 52/~. The origin is at the top left corner. 
C ~ atoms of the asymmetric unit are included in these sections; 
i.e. residues 70-93, 160-169 and 174-185 are shown as thin 
lines. [All the maps are calculated with the program X-PLOR3.0 
(Briinger, Kuriyan & Karplus, 1987) and displayed on an Evans 
and Sutherland PS300 with the program FRODO (Jones, 1978). 
The SIR phase calculation and the solvent-flattening procedure 
we carded out using the program PHASES.] 

The electron-density maps 

In order to reduce the noise in the electron-density 
maps, a correct weight should be associated with 
each reflection. Table 4(b) shows that the a range 
can be extremely wide: therefore, a weight directly 

48 

(a) 

(b) 

(c) 
Fig. 6. Stereo drawings of a portion of the electron-densit~¢ map of 

E2 around residues 43-49. Maps were calculated at 3 A resolu- 
tion with (a) direct methods, (b) model phases, using the same 
number of reflections (3226) and (c) phases derived from SIR 
and solvent flattening, using all the reflections that could be 
phased using the derivative (7751). 
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proportional to a would lead to small weighted 
phase errors [ERR(weighted)= 39, 42, 31 and 43 ° 
for APP, CARP, E2 and M-FABP, respectively] but 
could practically make negligible the contribution to 
the electron-density map of a large percentage of 
reflections (this weighting scheme was used in paper 
II). On the other hand, the weight W h = O l ( a h ) ,  
largely used for small-molecule electron-density 
maps, is also unsuitable: indeed, too high a percen- 
tage of reflections may have w = 1 (see Table 4b 
again), and this closely corresponds to the 
unweighted situation. We have preferred to use for 
the electron-density-map calculation a weighting 
scheme according to which 10% of the reflections 
(those with largest a values) have unitary weight: the 
other reflections are weighted by w = D l[f], where f 
is a smooth function increasing with a and 
(sin0/,~)-1. Weighted errors are shown in Tables 5-8 
for each structure. 

Since enantiomorphism is lost in APP and CARP, 
we calculated electron-density maps of E2 and 
M-FABP. Portions of the electron-density maps of 
E2 and M-FABP are shown in Figs. 5-8. A portion 
of the map calculated for E2 at 6 A resolution with 
direct-methods phases is shown in Fig. 5, maps at 
3 A resolution are shown in Figs. 6 and 7. When 
useful, they are compared with corresponding maps 
obtained via model phases or with 'solvent-flattening' 
phases. The latter were obtained starting from SIR 
phases, after applying an automatic solvent- 
flattening procedure as implemented in the P H A S E S  
program (W. Furey, VA Medical Center and Univ. 

(a) 

(b) 
Fig. 7. Same as Fig. 6, for density around residues 24-33. 

of Pittsburgh, PA, USA). Direct-methods maps are 
satisfactory: they are virtually identical to those 
obtained with model phases using the same number 
of reflections. Moreover, the electron density shows 
all the features of the molecular model. 

Fig. 5(a) shows a large portion of a 6 A-resolution 
map: the map is quite continuous, demonstrating 
that direct-methods phases are quite reliable even at 
very low resolution. The corresponding map 
obtained by the solvent-flattening procedure applied 
to SIR phases is shown in Fig. 5(b). The two maps 
are of comparable quality in spite of the fact that the 
latter is calculated with a number of reflections 
which is nearly double that used by direct methods. 

(a) 

V '7 
(b) 

(c) 
Fig. 8. Stereo drawings of the electron-density maps of M-FABP 

around a-helix I, residues 16-25. All maps are calculated at 3 A 
resolution, using (a) direct-methods phases, (b) model phases 
with the same number of reflections as the previous one and (c) 
model phases and all the reflections to 2.1 A resolution. 
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The solvent-flattening process, however, improves 
the phases by a more careful recognition of the 
solvent regions in the electron-density map. 

In Fig. 6, not only the envelope of the density is 
continuous, but also side chains, e.g. Phe44 and 
Glu45, are clearly distinguishable. Phases obtained 
by the solvent-flattening procedure (Fig. 6c) provide 
essentially the same information as direct-methods 
phases, even if they improve contrast between the 
protein and the solvent region. In Fig. 7, a portion of 
chain clearly presents the features of a a-helix. These 
results are quite surprising if we consider that we 
have used in the calculations only about a half of the 
reflections at the derivative resolution. Nevertheless, 
they can be explained if we consider that the reflec- 
tions we are using are in general the strongest ones 
and the overall mean error on the phase angles is 40 ° . 

A correlation coefficient between the published 
molecular model and the electron-density map was 
calculated according to Jones, Zou, Cowan & 
Kjeldgaard (1991) as implemented in the O program. 
The function, which takes values from - 1  to 1, was 
calculated for the main-chain atoms of every residue. 
It usually gives information about the quality of the 
model, but in our case was used to extrapolate 
information about the quality of our map assuming 
the model is correct. In Fig. 9, the correlation 
coefficient for the molecular model of E2 is plotted 
against the number of residues for the direct- 
methods map (map A), for the map calculated with 
the same number of reflections and model phases 
(map B), and for the map calculated with 3 A data 

and model phases (map C). The first two compare 
very well, i.e. the quality of our map (A) is prac- 
tically the same as for map B. Small breaks in the 
density are present in both maps, and the overall 
correlation coefficient is 0.476 and 0.594 for maps A 
and B, respectively. The quality of the 3 A map (map 
C) is obviously better, being based on phases 
obtained from the final refined model: no breaks are 
present in the main-chain density but the overall 
coefficient, 0.698, does not differ strongly from the 
previous two values. This situation is illustrated in 
Fig. 10, where a large portion of the three maps is 
reported. 

The same considerations do not apply for 
M-FABP: the electron density calculated using 1400 
reflections presents most of the correct features but is 
poor if compared with the map calculated with the 
same number of reflections and model phases 
(Fig. 8). 

Several breaks are present in the main-chain 
envelope and a noise level is present that makes it 
difficult to build a molecular model. A comparison 
of this map with those reported in paper II of this 
series suggests that more or less the same details are 
revealed. 

C o n c l u d i n g  r e m a r k s  

The set of phases provided by the phasing method 
described in paper II was not sufficiently large to 
produce interpretable electron-density maps. The 
procedure described here extends phases up to about 
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Fig. 9. Correlation coefficients between the model and the electron-density map, calculated with the program O (Jones, Zou, Cowan & 

Kjeldgaard, 1991). The continuous line represents the map calculated with phases from the present paper. The dashed line represents 
the map calculated with model phases and the same number of reflections (3226). The short-dashed line represents the map calculated 
with model phases using all the reflections at 3 A resolution (8135)• 
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(a) 

(b) 

(c) 

(a) 
Fig. 10. Stereographic projections of a portion of the electron- 

density map E2 viewed along y (x extending from 18 to 48 A, y 
from 18 to 28 A and z from 24 to 54 A) for the following maps: 
(a) phases from the present paper, 3226 reflections up to 3 A 
resolution; (b) phases from the refined model, same number of 
reflections as in (a); (c) phases from the refined model, 8135 
reflections up to 3 A resolution; and (d) phases from SIR and 
solvent flattening, 7751 reflections. In map (a), C ~ atoms for all 
the residues of one asymmetric unit that belong to these sections 
(amino acids from 43 to 46, 110 to 124, 158 to 173, 181 to 192, 
208 to 214 and 221 to 228) are drawn. 

40% of the reflections (up to the derivative resolu- 
tion). The process is fast, does not require the calcu- 
lation and the simultaneous use of millions of triplets 
and may be run in a completely automatic way. 
Thus, thousands of phases can be available with 
negligible computing time. 

It is evident that the phase-extension procedure 
has produced an easily interpretable map in the case 
of E2 and has partially failed in substantially 
improving the map of M-FABP. This could be 
mainly ascribed to two effects: in the former case, 
phases have been extended from 1000 to 3200 reflec- 
tions; in the latter, only 400 reflections have been 
added to the original 800. That is, the number of new 
reflections added for M-FABP has increased the set 
by about 50%, while the reflections added to E2 
represent about twice the original number. 

It is worth noting that the phasing process relies 
on a heavy-atom derivative and its quality has a 
strong influence on the final result: the heavy-atom 
derivative of M-FABP was not perfectly isomor- 
phous and this increases the phase error. However, 
the mean phase error is increased more in the former 
case, from 27 to 40 ° , than in the latter, from 46 to 
50 ° . 

Finally, the following drawbacks still limit the 
usefulness of the present phase-extension process. 

(1) Even if the number of phased reflections is 
sufficiently large for practical purposes, a non- 
negligible number of reflections with [A[----- 0 but large 
R values remain unphased [phase inaccessible via 
relation (2)]. They could provide, once phased, a 
valuable contribution to the electron-density map. 
This extension process could also be obtained even- 
tually by a 'solvent flattening'-like procedure or 
other technique complementary to that described in 
this paper, and could eventually help in all cases, like 
the M-FABP, where phases are substantially correct 
but insufficient to give the final solution. 

(2) The overall phase error is moderately large. Its 
eventual reduction should allow a better definition of 
the protein envelope. 

(3) The phase-refinement process following the 
phase-expansion procedure is fast but inefficient. 
This is probably because we only use the subsets 
{Til} of the entire family of triplets. 

(4) Pseudo-centrosymmetrical phases are provided 
in specific space groups. 

Our next efforts will be devoted to overcoming the 
above points. 
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Abstract 

A technique of crystal-thickness estimation and structure- 
factor-modulus restoration (reconstruction) from electron 
diffraction patterns, for use in crystal-structure determi- 
nation, is proposed based on the kinematic scattering 
theory. A criterion for a self-consistent test of the 
restored structure-factor modulus has also been intro- 
duced from the structure-factor statistics developed by 
direct methods for X-ray diffraction. Theoretical tests on 
some structures are successful and show that the 
diffraction intensities are improved to be closer to the 
moduli of the true structure factors. 

I. Introduction 

The techniques of combined high-resolution electron 
microscopy (HREM) with electron diffraction intensity 
have been used for both HREM image deconvolution 
and resolution enhancement (e.g. Ishizuka, Miyazaki & 
Uyeda, 1982; Fan, Zhong, Zheng & Li, 1985; Liu et al., 
1990; Downing, Meisheng, Wenk & O'Keefe, 1990; 
Dong et al., 1992; Hu, Fan & Li, 1992; Zou, Hovmbller, 
Parras, Gonzfilez-Calbet, Vallet-Regf & Grenier, 1993). 
These techniques are very useful in cases when crystals 
are too small for X-ray or neutron diffraction. Nearly all 
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of these studies were for the kinematical condition 
(weak-phase-object approximation) or near the kinema- 
tical condition (pseudo-weak-phase-object approxima- 
tion) (Tang & Li, 1988), that is when electron dynamical 
scattering is not predominant. Under such conditions, the 
phase of the diffracted wave function is replaced by the 
phase of the Fourier transform of the corresponding high- 
resolution electron-microscope image so that the phase 
problem that occurs in X-ray diffraction can be partly 
resolved. 

Although the dynamical-diffraction effect is much 
stronger in electron diffraction than in X-ray diffraction, 
the dynamical perturbations to the diffracted beams are 
expressed as phase distortions before the wave ampli- 
tudes change much from their kinematical values 
(Dorset, Tivol & Turner, 1992). That is to say, the 
electron diffraction intensity is proportional to the square 
of the modulus of the structure factor in a greater range of 
thickness than that for which kinematical diffraction is 
valid. 

A well known formula for the kinematical diffracted 
intensity, neglecting the Lorentz-polarization correction, 
gives the relative intensity as (Vainshtein, 1964; Cowley, 
1988) 

l(g) = IF(g)12[(sinTrsgt)/rCSgt] 2. (1) 
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